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Abstract

The TGF-β signaling pathway has a significant role in breast cancer initiation and promotion by 

regulating various cellular processes. We evaluated whether genetic variation in eight genes (TGF-

β1, TGF-β2, TGF-βR1, TGF-βR2, TGF-βR3, RUNX1, RUNX2, and RUNX3) is associated with 

breast cancer risk in women from the Breast Cancer Health Disparities Study. A total of 3,524 

cases (1,431 non-Hispanic whites (NHW); 2,093 Hispanics/Native Americans(NA)) and 4,209 

population-based controls (1,599 NHWs; 2,610 Hispanics/NAs) were included in analyses. 

Genotypes for 47 single nucleotide polymorphisms (SNPs) were determined. Additionally, 104 

ancestral informative markers estimated proportion of NA ancestry. Associations with breast 

cancer risk overall, by menopausal status, NA ancestry, and estrogen receptor (ER)/progesterone 

receptor tumor phenotype were evaluated. After adjustment for multiple comparisons, two SNPs 

were significantly associated with breast cancer risk: RUNX3 (rs906296 ORCG/GG = 1.15 95 % CI 

1.04–1.26) and TGF-β1 (rs4803455 ORCA/AA = 0.89 95 % CI 0.81–0.98). RUNX3 (rs906296) and 

TGF-βR2 (rs3773644) were associated with risk in pre-menopausal women (padj = 0.002 and 0.02, 

respectively) and in those with intermediate to high NA ancestry (padj = 0.04 and 0.01, 

respectively). Self-reported race was strongly correlated with NA ancestry (r = 0.86). There was a 

significant interaction between NA ancestry and RUNX1 (rs7279383, padj = 0.04). Four RUNX 

SNPs were associated with increased risk of ER-tumors. Results provide evidence that genetic 

variation in TGF-β and RUNX genes are associated with breast cancer risk. This is the first report 
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of significant associations between genetic variants in TGF-β and RUNX genes and breast cancer 

risk among women of NA ancestry.
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Introduction

The TGF-β signaling pathway includes several multifunctional cytokines and cell receptors 

that control the activity of particular genes to regulate cellular processes via a SMAD-

mediated signaling cascade [1, 2]. Inhibition of TGF-β signaling occurs in several cancers, 

including breast cancer [3–5]. Genes in this pathway may play a dual role in breast cancer: 

as early tumor suppressors with growth-inhibitory effects, and as late promoters of 

invasiveness and angiogenesis [6]. Genes in the TGF-β-signaling pathway also have been 

linked to expression of estrogen receptors (ER) [7–10]. One study reported that absence of 

the TGF-β response was more likely in ER+ tumors and associated with a poor prognosis 

[10].

There is evidence that Runt-related transcription factors (RUNX) interact with receptor 

regulated SMADs (R-SMADs) and are down-stream effectors of the TGF-β signaling 

pathway [11]. Three RUNX family members play an important tissue-specific role in 

determining the fate of cells during differentiation and growth, and there is increasing 

evidence that loss of function is involved in carcinogenesis [12–14]. In most tumor cells, 

genetic variation in key members of the pathway causes resistance to the growth-inhibitory 

effects of TGF-β signaling [15, 16].

Despite evidence for a role of TGF-β signaling genes in breast cancer, there are sparse data 

for the association of variants in these genes with breast cancer risk. Studies of the 

associations of genetic variants in TGF-β1, TGF-β2, and TGF-β receptors (TGF-βR1, TGF-

βR2, TGF-βR3) with breast cancer risk are inconsistent [5, 17–25], limited by small sample 

sizes [26–31], and data on non-white groups are lacking [29]. Meta-analyses, based 

primarily on non-Hispanic white (NHW) women, have not confirmed associations with the 

most commonly studied single nucleotide polymorphisms (SNPs) [TGF-β1 (rs1800469 and 

rs1982073) and TGF-βR1 (*6A/rs11466445)] with breast cancer risk [5, 18, 23–25], 

although mouse models have demonstrated that these SNPs increase (TGF-β1) and decrease 

(TGF-βR1) gene expression [28, 32–34]. To date, there are few, if any, published studies on 

the association of RUNX genes with breast cancer risk.

We investigated associations of 47 SNPs in eight genes (TGF-β1, TGF-β2, TGF-βR1, TGF-

βR2, TGF-βR3, RUNX1, RUNX2, and RUNX3) with breast cancer risk in the Breast Cancer 

Health Disparities Study (BCHD), a population-based, collaborative study of Hispanic/

Native American (NA) and NHW women living in the United States or Mexico [35]. We 

evaluated whether associations differ by European or NA ancestry, menopausal status, and 
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ER and progesterone receptor (PR) tumor phenotype. Additionally, SNP–SNP interactions 

were assessed.

Methods

Study population

The BCHD study is a consortium of three population-based case–control studies in the 

United States and Mexico: the 4-Corner’s Breast Cancer Study (4-CBCS), the San Francisco 

Bay Area Breast Cancer Study (SFBCS), and the Mexico Breast Cancer Study (MBCS). 

Participants completed an in-person interview and provided a blood or saliva sample for 

DNA extraction [35]. The 4-CBCS participants were between 25 and 79 years of age. 

Eligible cases were diagnosed with a first primary breast cancer (in situ or invasive) between 

10/1999 and 05/2004 in Arizona, Colorado, New Mexico, and Utah. Controls were 

randomly selected and frequency-matched to cases on 5 year age distributions and ethnicity. 

A total of 1,850 cases (1,244 NHW; 606 Hispanic/NA) and 2,057 controls (1,329 NHW; 

728 Hispanic/NA) participated. SFBCS participants were between the ages of 35 and 79 

years and lived in the San Francisco Bay Area. Eligible cases were diagnosed with a first 

primary invasive breast cancer between 04/1995 and 04/2002 (Hispanics) or between 

04/1995 and 04/1999 (NHWs); controls were selected using random-digit dialing and 

frequency-matched to cases on 5 year age distributions and ethnicity. A total of 1,105 cases 

(312 NHW; 793 Hispanic) and 1,318 controls (320 NHW; 998 Hispanic) participated. 

Participants from the MBCS included women between 28 and 74 years of age. Eligible cases 

were diagnosed with a first primary breast cancer (in situ or invasive) between 01/2004 and 

12/2007 across 12 participating hospitals in three main healthcare systems. Controls were 

selected from the participating hospitals’ geostatistic catchment area using a probabilistic 

multistage design and matched to cases on 5 year age distributions, healthcare institute 

membership, and residency. A total of 1,881 women (850 cases, 1,031 controls) 

participated. All participants signed informed written consent prior to participation and the 

Institutional Review Board for Human Subjects at each institution approved the studies.

Data harmonization

Questionnaire data were harmonized across the three studies as previously described [35]. 

Women were classified as pre-menopausal or post-menopausal based on menstrual history 

and menopausal hormone therapy use. Women who reported still having periods were 

classified as pre-menopausal. Women were classified as post-menopausal if they reported 

natural menopause (≥12 months since last period), using hormone replacement therapy, or 

were at or above the 95th percentile of age for race/ethnicity of those reporting natural 

menopause within their study center. Mean ages for natural menopause were 58 and 56 

years for 4-CBCS NHW and Hispanic/NA women, 55 and 56 years for SFBCS NHW and 

Hispanic women, and 54 years for MBCS Hispanic women.

Genetic data

DNA was extracted from either whole blood (n = 7,287) or saliva (n = 634) samples. Whole 

genome amplification (WGA) was conducted on saliva-derived DNA samples prior to 

genotyping. A tag-SNP approach was utilized to capture variation across candidate genes. 
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SNPs were selected using five parameters: (1) linkage disequilibrium (LD) blocks defined 

using a Caucasian LD map and an r2 = 0.8; (2) minor allele frequency (MAF) > 0.1; (3) 

range = ±1500 base pairs (bps) from the initiation codon to the termination codon; (4) 1 

SNP/LD bin; or (5) evidence of functionality. A multiplexed bead array assay based on 

GoldenGate chemistry (Illumina, San Diego, CA) was used for genotyping with a call rate 

of 99.93 % (99.65 % for saliva samples). There were 132 internal blinded replicates (1.6 % 

of the sample set). The duplicate concordance rate was 99.996 % as determined by 193,297 

matching genotypes among sample pairs.

We investigated 47 SNPs in eight genes: TGF-β1 (2 SNPs), TGF-β2 (1 SNP), TGF-βR1 (5 

SNPs), TGF-βR2 (1 SNP), TGF-βR3 (5 SNPs), RUNX1 (8 SNPs), RUNX2 (17 SNPs), and 

RUNX3 (8 SNPs). Supplemental Table 1 provides identification (rs) numbers and 

descriptions of selected SNPs. Minor allele frequencies (MAF) and Hardy-Weinberg 

Equilibrium (HWE) were calculated based on the frequencies of alleles and genotypes in the 

control population. We genotyped 104 Ancestral Informative Markers (AIMs) to 

characterize proportion of NA ancestry. AIMs were selected based on established 

differences in specific alleles between NA and European populations [36, 37].

Tumor characteristics

Statewide cancer registries in Utah, Colorado, Arizona, New Mexico, and California 

provided information on ER and PR tumor phenotype for a subset of 995 (69 %) NHW 

cases and 968 (75 %) Hispanic/NA cases. ER and PR were not available from the MBCS.

Statistical analysis

STRUCTURE 2.0 was utilized to calculate the proportion of genetic admixture based on 

European and NA ancestry [35, 37]. Percent ancestry was categorized, based on the 

distribution of NA ancestry in the control population, allowing sufficient power to assess 

associations of ancestral groups with breast cancer risk (≤28 %, 29–70 %,>70 %) [35]. 

Differences in covariates between self-reported ethnicity and case–control status were tested 

using the Mantel–Haenszel Chi square (χ2). Logistic regression was used to estimate odds 

ratios (OR) for associations of genotypes with breast cancer risk adjusting for age (<40, 40–

49, 50–59, 60–69, 70+), study center (4-CBCS, SFBCS, MBCS) and percent NA ancestry. 

Associations for each SNP were initially assessed assuming a co-dominant mode of 

inheritance. Dominant and/or recessive models were considered when the trend in ORs 

suggested a different mode of inheritance than co-dominant and increased statistical power 

could be gained by collapsing genotypes. Confounding by categories of age, study center, 

NA ancestry, body mass index (BMI), first-degree family history of breast cancer, age at 

menarche, age at menopause, menopausal status, parity, age at first birth, education, oral 

contraceptive use, hormone therapy use, alcohol consumption, and smoking status, and for 

continuous measures of physical activity and NA ancestry. Covariates were considered 

confounders if the univariate p value was ≤0.20 and adjustment produced a change of ≥10 % 

in the effect estimate for the overall association of the genotype with breast cancer risk [38]. 

We did not observe confounding by any factor; nonetheless all models were adjusted for 

age, study center and percentage of NA ancestry.
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Statistical interactions of SNPs with NA ancestry, self-reported ethnicity, and menopausal 

status were assessed using the difference in maximum likelihood estimates for logistic 

regression models with and without an interaction term, using a χ2 test with 2 degrees of 

freedom (2-df) for a co-dominant model, and 1 degree of freedom (1-df) for a dominant or 

recessive model. Risk of each breast cancer subtype (ER/PR tumor phenotype) was 

evaluated using multinomial logistic regression [39, 40]. SNP–SNP interaction models were 

assessed for those SNPs significantly associated with breast cancer risk and considering 

their biological function and potential interactions within the TGF-β signaling pathway.

P values, based on a 1-df Wald χ2 test statistic, were adjusted for multiple comparisons 

taking into account tag-SNPs within each gene using a step-down Bonferroni correction 

method [41]. This method is based on the effective number of independent SNPs determined 

using the SNP spectral decomposition method based on the eigenvalues of the correlation 

matrix among the SNPs for each gene as proposed by Nyholt [42] and modified by Li and Ji 

[43]. This method is conservative, especially when evaluating correlated variables such as 

SNPs within a gene. An adjusted P ≤ 0.05 for main effects and interactions was considered 

statistically significant. All statistical analyses were performed using SAS version 9.3 (SAS 

Institute, Cary, NC).

Results

The analyses included 7,733 participants (3,524 cases, 4,209 controls) with complete data 

for the SNPs of interest. Approximately 60 % of participants were over 50 years of age, with 

a higher proportion of pre-menopausal women among Hispanic/NA cases (41 vs. 34 %) and 

Hispanic/NA controls (41 vs. 32 %) than NHW (p < 0.0001) (Table 1). Hispanic/NA cases 

tended to less educated (p <0.0001) and have more ER−/PR− tumors than NHW (23 vs. 18 

%) (p = 0.001). Self-reported race/ethnicity was strongly correlated with NA ancestry 

(Cramer’s V, r = 0.86). Nearly all women (99.5 %) from the U.S. who self-reported being 

NHW were in the low NA ancestry group, whereas those who self-reported being 

Hispanic/NA were distributed across the intermediate (75.9 %), low (16.7 %), and high (7.4 

%) NA ancestry groups. The majority of Mexico Hispanics (controls) had high (51.6 %) or 

intermediate (47.3 %) NA ancestry (data not shown).

Of the 47 SNPs evaluated, 10 [RUNX1 (rs7279383 and rs8127225); RUNX2 (rs10948238 

and rs13201287); RUNX3 (rs906296); TGF-β1 (rs4803455); TGF-β2 (rs6604609); TGF-βR1 

(rs6478974); TGF-βR2 (rs3773644); and TGF-βR3 (rs6678564)] were significantly 

associated with breast cancer risk after adjustment for age, study, and NA ancestry (Table 

2). After adjustment for multiple comparisons, a significant increase in breast cancer risk 

was observed for RUNX3 (rs906296 ORCG/GG = 1.15; 95 % CI1.04–1.26; padj = 0.03) and 

an inverse association was observed for TGF-β1 (rs4803455, ORCC/AA = 0.89; 95 % CI 

0.81–0.98; padj = 0.04). TGF-β2 (rs6604609) was significantly associated with reduced risk 

of breast cancer (ORTA/AA = 0.80, 95 % CI 0.71–0.91, p = 0.0002), whereas TGF-βR2 

(rs3773644) was associated with increased risk of breast cancer (ORTT = 1.21, 95 % CI 

1.05–1.40, p = 0.004).
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RUNX3 (rs906296) had a significant interaction with menopausal status before multiple 

comparison adjustment (padj = 0.08), and was significantly associated with increased breast 

cancer risk in pre-menopausal women (ORAA = 1.33; 95 % CI 1.14–1.55 padj = 0.002) 

(Table 3). Although RUNX1 (rs2268288, ORCC = 1.47; 95 % CI 1.03–2.09, padj = 0.26) and 

RUNX3 (rs4478762, ORAA = 1.71; 95 % CI 1.04–2.82, padj = 0.21) were associated with a 

modest increase in post-menopausal breast cancer risk, these were not significant with 

adjustment for multiple comparisons. The SNPs TGF-βR2 (rs3773644, ORTT = 1.32, 95 % 

CI 1.04–1.68, p = 0.02) and TGF-β2 (rs6604609) (ORTA/AA = 0.77, 95 % CI 0.66–0.91, p = 

0.002) were significantly associated with breast cancer risk among pre-menopausal and 

post-menopausal women, respectively (data not shown).

There was significant interaction between NA ancestry and RUNX1 (rs7279383, padj = 

0.04) (Table 4). Women with the highest NA ancestry had a significant increase in risk 

(ORCG/GG = 1.75 95 % CI 1.17–2.63, padj = 0.05), whereas those with low and high NA 

ancestry had nonsignificant reduced risks (ORCG/GG = 0.87 95 % CI 0.76–1.00, padj = 0.41 

and ORCG/GG = 0.82 95 % CI 0.69–0.97, padj = 0.14, respectively). Divergent results were 

also observed by NA ancestry for TGF-β1 (rs1800469); women with intermediate NA 

ancestry had a significant increased risk (ORTT = 1.29, 95 % CI 1.04–1.58, padj = 0.04), 

whereas there was a null association in those with low and high NA ancestry (ORTT = 0.96, 

95 % CI 0.77–1.20, padj = 1.00, and ORTT = 0.92, 95 % CI 0.65–1.30, padj = 0.94, 

respectively). Several SNPs were significantly associated with increased risk in women with 

intermediate NA ancestry, although results were not significantly divergent across NA 

ancestry: RUNX3 (rs906296, ORCG/GG = 1.23, 95 % CI 1.06–1.43, padj = 0.04); and TGF-

βR2 (rs3773644, ORTT = 1.44, 95 % CI 1.11–1.88, p = 0.01) (data not shown). One SNP 

was inversely associated with risk of women with intermediate NA ancestry: TGF-β2 

(rs6604609, ORTA/AA = 0.76, 95 % CI 0.63–0.91, p = 0.003, data not shown). Further 

evaluation of self-reported ethnicity yielded similar results, although no significant 

interactions were observed.

Table 5 shows associations between TGF-β signaling SNPs and breast cancer risk stratified 

by ER/PR tumor phenotype. Only one SNP was significantly different across ER/PR 

phenotypes after adjustment for multiple comparisons (RUNX3, rs7517302, padj = 0.04). 

However, five SNPs were significantly associated with risk within ER/PR phenotype strata 

that remained significant after adjustment for multiple comparisons. RUNX1 (rs7279123) 

was associated with reduced breast cancer risk for ER+/PR− (padj = 0.03). There was 

increased breast cancer risk for ER−/PR+ (RUNX3, rs2236850, padj = 0.03); and increased 

risk for ER−/PR− for RUNX2 rs9463090 (padj = 0.009), RUNX2 rs12333172 (padj = 0.007) 

and RUNX3 rs7517302 (padj = 0.03). There were no associations between SNPs and breast 

cancer risk defined by ER+/PR+ phenotype. We also evaluated interactions between 

individual SNPs and menopausal status within ER phenotypes: no significant interactions 

were observed.

Lastly, SNP–SNP interactions were examined for SNPs with statistically significant main 

effects for breast cancer risk. Only two were statistically significant [RUNX3 (rs7517302 

and rs906296)*TGF-βR1 (rs6748974)]. The combined effect for rs 7517302*rs6748974 (p = 
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0.003) and rs906296*rs6748974 (p = 0.02) resulted in a slight increase in risk (OR = 1.20, 

data not shown).

Discussion

The present analyses suggest that genetic variation in the TGF-β signaling pathway [TGF-

β1, TGF-β2, TGF-βR1, TGF-βR2, TGF-βR3, RUNX1, RUNX2, and RUNX3] influences 

breast cancer risk in Hispanic/NA and NHW women. Four SNPs were associated with breast 

cancer risk [RUNX3 (rs906296); TGF-β1 (rs4803455); TGF-β2 (rs6604609); and TGF-βR2 

(rs3773644)]. Additionally, associations differed by ER/PR tumor phenotype, menopausal 

status, and percentage NA ancestry. In particular, two SNPs, RUNX3 (rs906296) and TGF-

βR2 (rs3773644) were significantly associated with increased risk in pre-menopausal women 

and women of intermediate NA ancestry. Additionally one SNP, TGF-β2 (rs6604609), was 

associated with decreased risk in these groups. This provides further evidence that RUNX3 

interacts with the TGF-β signaling pathway.

Genes from the TGF-β superfamily of cytokines and RUNX family have important roles 

regulating cellular processes and are part of one of the most commonly altered cellular 

signaling pathways in cancer, making them attractive candidates for cancer-related etiology 

[44, 45]. A general biological mechanism for the relationship between TGF-β signaling and 

breast cancer may be a SMAD-mediated pathway which facilitates the transduction of 

signals for target genes involved in cellular processes [1]. In normal mammary cells, TGF-

β1 is reported to have an anti-proliferative effect on epithelial and endothelial mammary 

cells by acting as a tumor suppressor down-regulating cellular growth, differentiation and 

apoptosis [3, 5]. Mouse models also offer evidence that increased levels of TGF-β1 in serum 

strengthen tumor suppressor activity, reducing risk of breast cancer [4]. Immune cells, 

including B-cell, T-cell, and macrophages, secrete TGF-β1, which negatively regulates their 

proliferation, differentiation, and activation by other cytokines. This process makes TGF-β1 

an effective immunosuppressor, and disruption of the signaling pathway is linked to 

autoimmunity, inflammation, and cancer [46].

In most tumor cells, genetic variants can cause resistance to the inhibitory effects of TGF-β 

signaling [15, 16]. Exact mechanisms for resistance remain unknown, although evidence for 

other cancers suggests there may be decreased expression of TGF-β receptors [47, 48], 

oncoproteins such as p53 [49], other tumor suppressors that regulate the pathway such as 

RUNX3 [50], or increased expression of inhibitory SMADs (I-SMAD6 or I-SMAD-7) in the 

extracellular matrix [3]. There is also evidence that when TGF-β1 and TGF-βR1 are 

overexpressed following tumor initiation, they promote angiogenesis via cell migration and 

adhesion factors, resulting in metastasis [3]. RUNX genes have the ability to enhance growth 

regulation by making target cells sensitive to the effects of TGF-β family members. In turn, 

TGF-β genes can activate RUNX genes at the transcription and post-transcriptional levels 

[51, 52]. Most of our findings indicate that genetic variation is associated with increased 

breast cancer risk, suggesting that these genes are no longer acting as tumor suppressors via 

normal signaling.
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Several epidemiological studies have investigated associations between select SNPs in TGF-

β1, TGF-β2, and TGF-β receptors and breast cancer [15, 17, 18, 21, 28–32]. With the 

exception of one [17], most studies are underpowered and results are inconsistent. Only one 

study to date included Hispanic women, Le Marchand et al. [29] reported an inverse 

association for the (CC vs. TT) genotype of TGF-β1 (rs1982073) (ORCC = 0.81 95 % CI 

0.52–1.27) in post-menopausal Hispanic women from the Multiethnic Cohort study; 

however, the number of Hispanic women was small (67 cases, 179 controls) and the analysis 

was underpowered.

Three meta-analyses were conducted for TGF-β1 (rs1800469) and breast cancer risk: no 

association was observed for the recessive model (TT vs. CC/CT) [18, 23, 25]. Although we 

did not find an overall association for the recessive model of rs1800469 also, the co-

dominant model suggested increased risk for women with intermediate NA ancestry. 

Moreover, present study suggests there is moderate LD (r2 = 0.67) between TGF-β1 

(rs1800469) and TGF-β1 (rs4803455) in both Hispanic/NA and NHW women. In our study, 

there was a significant inverse association of TGF-β1 (rs4803455) with breast cancer risk.

The Shanghai Breast Cancer Study [21] conducted a multistage pathway analysis evaluating 

11 genes (341 SNPs) in the TGF-β signaling pathway. Results for two SNPs can be 

compared to those from the present study. Statistically significant results were reported for 

the additive model of TGF-βR1 (rs10733710, OR = 1.11, p = 0.02) and the recessive model 

of TGF-bR3 (rs284185, ORAA = 1.74, p = 0.004), which contrasts with our non-significant 

findings. The nominal p values reported by Ma et al. [21] suggest that their results may not 

be significant if adjusted for multiple comparisons.

Genetic variation among RUNX genes may be important in colorectal cancer [53], but there 

are no epidemiological data for breast cancer. We found several associations between RUNX 

SNPs and breast cancer risk (RUNX3 rs9062696) in women of intermediate to high NA 

ancestry (RUNX3 rs906296 and RUNX1 rs7279383), as well as an interaction with NA 

ancestry (RUNX1 rs7279383). These findings support the hypothesis that genetic variation 

can influence breast cancer differently in Hispanic/NA than NHW women, possibly due to 

unmeasured biological functional variants that influence susceptibility.

TGF-β signaling may alter expression of the estrogen receptor (ERα) and estrogen may 

reciprocally interfere with this signaling [7–9]. ERα activation has been reported to inhibit 

TGF-β1 transcription activity by up to 60 % [54, 55] and RUNX1 has been considered an 

“accessibility factor” for ERα binding sites [9]. RUNX2 decreases ERα mRNA and protein 

levels in breast cancer cells; and RUNX3 may function as a tumor suppressor by 

destabilizing the ERα gene and inhibiting its expression [7, 56]. Our study is the first to 

evaluate associations between TGF-β and RUNX genes with risk of breast cancer stratified 

by ER/PR tumor phenotypes. Four RUNX SNPs were significantly associated with an 

increased risk of ER−/PR− (RUNX2 rs9463090 and rs12333172, RUNX3 rs2236850 and 

rs7517302) and ER−/PR+ (RUNX1 rs7279123) tumors. These novel findings suggest that 

variation in RUNX genes may increase proliferation in ER− breast cells. Although the 

present analysis included 1,963 cases with available data on ER/PR phenotypes, tumor 

phenotype data for cases in MBCS were unavailable, limiting statistical power when 
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evaluating rarer phenotypes (ER−/PR+). Nonetheless, our results support the role of these 

genes in influencing estrogen-related associations with breast cancer.

There are several strengths and limitations for this study. The sample size provided 

sufficient power to evaluate different modes of inheritance and stratified analyses. Genetic 

ancestry, measured by 104 AIMs markers, was used determine biological ancestry in 

addition to self-reported ethnicity, allowing us to focus on the biological basis of 

associations while evaluating lifestyle factors that differ between groups. Because of sparse 

data in the literature for these genes, comparisons to other studies for specific SNPs and the 

interpretation of our findings were guided mostly by in vivo studies. However, we used a 

tag-SNP approach to cover variation across the entire gene, as the selected SNPs are in 

linkage disequilibrium with those not reported. Finally, adjustment for multiple comparisons 

is conservative and may result in false negative associations.

Results from the present study may have implications for the etiology of breast cancer 

phenotypes and disparities between race/ethnic groups for risk. The present study is the first 

to report associations between variants in these genes and ER/PR tumor phenotype, 

menopausal status, and NA ancestry. Our results suggest that variation in these genes may 

explain the previously reported results that Hispanic women have increased risk of pre-

menopausal, ER− breast cancer compared to NHW. Biologic significance of the genes is 

strongly suggested, although specific SNPs that were evaluated may or may not be 

functional. A better understanding of how TGF-β and RUNX genes can switch their role 

from tumor suppressor to promoter in breast carcinogenesis is needed, as well as how these 

genes may influence ER expression. Studies evaluating a larger representation of SNPs in 

this complex signaling pathway will aid in validating our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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